shows that use of the Hertz solution results in substantial errors for large contact domains.

REFERENCES

1. Bondareva, V.F., Contact problems for an elastic sphere. PMM Vol. 35, № 1 , 1971.
2. Abramian, B. L., Arutiunian, N. Kh. and Babloian, A. A., On two contact problems for an elastic sphere. PMM Vol. 28, $N=4,1964$.
3. Karpenko,V. A., Axisymmetric contact problem for an elastic sphere. Izv. Akad. Nauk ArmSSR, Mekhanika, Vol. 24, № 4, 1971.
4. Bondareva, V.F., On the effect of an axisymmetric normal loading on an elastic sphere. PMM Vol. 33, № 6, 1969.
5. Aleksandrov, V. M., On the approximate solution of a certain type of integral equations. PMM Vol. 26, № 5, 1962.

Translated by M. D. F.
UDC 539.376
NEW EULER STABILITY CRITERION FOR A VISCOELASTIC ROD
PMM Vol. 40, № 4 , 1976, pp. 766-768
E. I.-G. GOL' DENGERSHEL'
(Moscow)
(Received February 6, 1975)
A detailed exposition of the mechanical results announced in [1] is given below.
Let us suppose that a thin viscoelastic variable-section rod of finite length l is subjected to weak bending, under the action of longitudinal compressive force P, and under the influence of a slowly varying external transverse load $p(x, t)$.

Then the deflection $y(x, t)$ of the rod axis is described by the following boundary value problem [2-4]:

$$
\begin{align*}
& -\frac{\partial^{2}}{\partial x^{2}}\left(E I(x) \frac{\partial^{2} u}{\partial x^{2}}\right)-P \frac{\partial^{2} y}{\partial x^{2}}-p \int_{0}^{t} K(t, \tau) \frac{\partial^{2} y}{\partial x^{2}} d \tau= \tag{1}\\
& -n(x, t)-\int_{0}^{t} K(t, \tau) p(x, \tau) d \tau, \quad 0 \leqslant x \leqslant l, \quad 0 \leqslant t<\infty \\
& \quad U_{i}[y]=0, \quad i=1,2,3,4 \tag{2}
\end{align*}
$$

Here the notation introduced in [1], and the conditions imposed on the moment of inertia $I(x)$, the creep kernel $K(t, \tau)$ and the left sides of the boundary conditions $U[y]$, are retained. We also proceed from the definition of Euler stability and the critical value of the force P contained in [1]. (Another approach to this question is contained in [5]).

The purpose of this paper is to obtain a lower bound and an exact formula for the critical value of the force P under substantially mure general conditions than in [4]. Theorem 1 from [1] on the spectrum of the Volterra operator V

$$
\begin{equation*}
(V f)(t)=\int_{0}^{t} K(t, \tau) f(\tau) d \tau, \quad 0 \leqslant t<\infty \tag{3}
\end{equation*}
$$

in the Banach space $M_{\langle\alpha(t)\rangle}$ and its subspaces $\Lambda_{\langle\alpha(t)\rangle}$ and $Z_{\langle\alpha(t)\rangle}$, is used.
We shall assume that $p(x, t)$ belongs to the Banach space $\Lambda_{\langle a(t)\rangle}(C[0, l])$. This space is denoted by $C \Lambda_{\langle\alpha(t)\rangle}$ in $[1,4]$.

As in [4], we reduce the boundary value problem (1), (2) to its equivalent Volterra
type integral equation $\left(Q\left(^{(P) V}-\frac{1}{P} I\right) y=\frac{1}{P} M^{-1}(P)(I+V) p\right.$
Here $M(P)$ is the differential operator generated by the differential expression

$$
l_{0}[y] \equiv\left(-\frac{d^{2}}{d x^{2}}\left(E I(x) \frac{d^{2}}{d x^{2}}+P I\right)\right) y
$$

and the boundary conditions (2), $Q(P)$ is a Fredholm operator of the form

$$
\begin{equation*}
(Q(P) g)(x)=\int_{0}^{l} \frac{\partial^{2} Q_{0}(x, \xi, P)}{\partial \xi^{2}} g(\xi) d \xi \tag{5}
\end{equation*}
$$

acting in $C[0, l], Q_{0}(x, \xi, P)$ is the Green's function of the operator $M(P)$, and V is the Volterra operator (3) acting in $\mathbf{\Lambda}_{\langle\alpha(t)\rangle}$.

A close connection exists between the Euler stability with weight $\alpha(t)$ of the boundary value problem (1), (2) and the spectrum of the operator $Q(P) V$ in the space $\Lambda_{\langle\alpha(t)\rangle}(C[0, l])$. The following lemma establishes this connection.

Lemma. In order for the boundary value problem (1), (2) to be Euler stable with weight $\alpha(t)$, it is necessary and sufficient that $1 / P$ be a regular point of the operator $Q(P) V$ in the space $\Lambda_{\langle\alpha(t)\rangle}(C[0, l])$.

Proof. Sufficiency follows from (4). In order to prove the necessity, we use the theorem for multiplying spectra according to which

$$
\begin{equation*}
\sigma(Q(P) V)=\bigcup_{i} \bigcup_{\lambda \in \sigma(V)} \frac{\lambda}{P_{i}-P} \tag{6}
\end{equation*}
$$

where $\sigma(Q(P) V)$ is the spectrum of the operator $Q(P) V$ in $\Lambda_{\langle\alpha(t)\rangle}(C[0, l])$.
If $1 / P \in \sigma(Q(P) V)$, then according to (6) there is a $\lambda_{0} \in \sigma(V)$ and a $P_{i_{0}}$ such that

$$
1 / P=\lambda_{0} /\left(P_{i_{0}}-P\right)
$$

This means

$$
\left(P_{i_{0}}-P\right) / P \in \sigma(V)
$$

Further, let us repeat the reasoning contained in the proof of Lemma 2 in [4] but replacing $\Lambda_{\left\langle e^{-\theta t}\right\rangle}$, by $\Lambda_{\langle\alpha(t)\rangle}$, which concludes the proof of the lemma.

This lemma and Theorem 1 from [1] permit a proof of the following theorem.
Theorem : Let $K(t, \tau)=K_{0}(t, \tau)+K_{1}(t, \tau)$, where each term satisfies conditions (1) - (3) of Theorem 1 in [1] and

$$
\begin{equation*}
\lim _{\mathrm{s} \rightarrow \infty} \sup _{t \geqslant s} \int_{s}^{t}\left|K_{1}(t, \tau)\right| \frac{\alpha(t)}{\alpha(\tau)} d \tau=0 \tag{7}
\end{equation*}
$$

1) If $K_{0}(t, \tau) \geqslant 0$ in the domain $0 \leqslant \tau \leqslant t<\infty$, then the critical value of the force P is given by the formula

$$
\begin{equation*}
P_{\langle\alpha(t)\rangle}=P_{z} /\left(1+T_{k_{\phi}}\right) \tag{8}
\end{equation*}
$$

where P_{ε} is the critical Euler force corresponding to (1), (2) (let us recall that $P_{\varepsilon}=P_{1}$ (see [4]).
2) If

$$
\alpha(0)=1, \quad \alpha(t+\tau) \leqslant \alpha(t) \alpha(\tau), \quad K_{0}(t, \tau)=K_{0}(t-\tau)
$$

$$
\theta=\lim _{t \rightarrow \infty} \frac{\ln \alpha(t)}{-t}<\infty, \quad \int_{0}^{\infty}\left|K_{0}(t)\right| \alpha(t) d t<\infty
$$

then the following estimate holds for the critical value of the force P

$$
\begin{equation*}
\left.P\langle\alpha(t)\rangle \geqslant P_{z} /\left(1+x_{0}\right), \quad\left(\chi_{0}=\max _{\operatorname{Re} w \geqslant \theta} \operatorname{Re} k_{0}(w) \text { for } \operatorname{Im} k_{0} ; w\right)=0\right) \tag{9}
\end{equation*}
$$

where $k_{0}(w)$ is the Laplace transform of $K_{0}(t)$.
Equality in the estimate (9) is achieved for $\alpha(t)=e^{-\theta t}$.
3) For subcritical values of the force P the limit deflection $\left(L_{\alpha} y\right)(x)$ is the solution of the boundary value problem obtained from (1),(2) with the replacements; y by $L_{\alpha} y$, ρ by $L_{\alpha} p$, and the Volterra operator V in (3) by the operator of multiplication by a constant $T_{k_{0}}$.

Proof. Let us start with the assertion (1). According to (6) and Theorem 1 from [1], the spectrum radius of the operator $Q(P) V$ in $\Lambda_{\langle\alpha(t)\rangle}(C[0, l])$ equals $T_{k_{0}} /\left(P_{\varepsilon}-P\right)$. Hence, for $1 / P>T_{k_{\mathbf{a}}} /\left(P_{\varepsilon}-P\right)$ Euler stability with the weight $\alpha(t)$, holds. If $1 / P=$ $T_{k_{0}} /\left(P_{\varepsilon}-P\right)$, then $1: P \in \sigma_{\langle\alpha(t)\rangle}(Q(P) V)$ and therefore (see the lemma), stability does not occur. Hence, (8) follows.

Let us prove (2). There results from Theorem 1 in [1] and the corollary to Theorem 1 in [6] that the transform of the half-plane $\operatorname{Re} w \geqslant \theta$ given by the function $k_{0}(w)$ covers the spectrum of the operator V in (3) in $\Lambda_{\langle\alpha(t)\rangle}$. Hence, and also from (6), it follows that if

$$
\begin{equation*}
1 / P>x_{0} /\left(P_{\mathrm{s}}-P\right) \tag{10}
\end{equation*}
$$

then $1 / l^{\prime}$ is a regular point of the operator $Q(P) V$ in $\Lambda_{\langle x(t)\rangle}(C[0, l])$. This means that Euler stability with weight $\alpha(t)$ holds for $P<P_{\varepsilon} /\left(1+x_{0}\right)$. The estimate (9) is hence obtained.

Let us examine the case $\alpha(t) \cdots e^{-\theta t}$ In this case

$$
x_{0} \in J_{\left\langle e^{-\theta t\rangle}\right\rangle}(V), x_{0} /\left(P_{\varepsilon}-P\right) \in \sigma_{\left\langle e^{-\theta t}\right\rangle}(Q(P) V)
$$

Hence, if the "greater than" sign is replaced by the "equals" sign in [10), then according to the lemma, stability will not occur and the right side of the inequality (9) will yield an expression for the critical force $P^{\left\langle e^{-\theta t}\right\rangle}$.

The assertion (3), which is a direct corollary to Lemma 1 from [4], the lemma of this paper, and the easily provable equality $T_{k}=T_{k_{0}}$, affords a foundation for a method of computing the creep strength modulus under more general conditions than in [4].

REFERENCES

1. Gol'dengershel', E. I., Spectrum of a Volterra operator on a half-axis and Euler stability of viscoelastic rods. Dokl. Akad. Nauk SSSR, Vol. 217, № 4, 1974.
2. Landau, L. D. and Lifshits, E.M., Theory of Elasticity. (English translation), Pergamon Press, Book № 13128, 1959.
3. Rabotnov, Iu. N., Creep of Structural Elements. "Nauka", Moscow, 1966.
4. Gol'dengershel', E. I . On the Euler stability of a viscoelastic rod. PMM Vol. 38, № 1, 1973 .
5. Andreichikov, I. P, and Iudovich, V. I. On the stability of viscoelastic rods. Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, № 2,1974.
6. Gol'dengershe1', E.I., Spectrum of a Volterra operator on a half-axis and PaleyWiener type Tauberian theorems. Dokl, Akad. Nauk SSSR, Vol, 129, № 5, 1959.
7. Gol'dengershel', E.I., On the Euler stability of a viscoelastic rod. Dokl. Akad. Nauk SSSR, Vol. 207, № 2, 1972.
8. Distefano, J. N., Creep buckling of slender columns. J. Struct. Div. Proc. Amer. Soc. Civil Engrs. , Vol. 91, № 3, Pt. 1, pp. 127-149, 1965.
