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shows that use of the Hertz solution results in substantial errors for large contact domains. 
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A detailed exposition of the mechanical results announced in [l] is given below, 
Let us suppose that a thin viscoelastic variable-section rod of finite length E is sub- 

jected to weak bending, under the action of longitudinal compressive force P , andunder 
the influence of a slowly varying external transverse load p (2, t) . 

Then the deflection Y (z, t) of the rod axis is described by the following boundary 

value problem [2 - 43: t 

- P (5, t) - s K (t, t) P P, z) dt, O\<x<l, o<t<co 

0 

ui [y] = 0, i -= 1,2,3, 4 (2’ 

Here the notation introduced in El], and the conditions imposed on the moment of iner- 
tia I fz), the creep kernel K (t, 7) and the left sides of the boundary conditions II [y] , 

are retained. We also proceed from the definition of Euler stability and the critical va- 
lue of tbe force P contained in [1] , (Another approach to this question is contained in 

C51). 
The prpose of this paper is to obtain a lower bound and an exact formula for the cri- 

tical value of the-force P under subst~~a~y more general conditions than in [4]. The- 

orem 1 from [l] on the spectrum of the Volterra operator V 
t 

(v/l (t) := s K (‘3 t) f (z) dz, o < t < ~3 (3) 



in the Banach space MC,(*)) and its subspaces A<,(t)> and Z++)) , is used. 
We shall assume that P (z, t) belongs to the Banach space A(, (t)) (C [O, 11). This 

space is denoted by CA<, Ct,> in [l, 41. 
As in [4], we reduce the boundary value problem (l), (2) to its equivalent Volterra 

type inkgra1 equatim ( Q (P) V -; I ) y = $ M-1 (P) (I + V) p (4) 

Here M IP) is the differential operator generated by the differential expression 

zo[Y1q- g&w~) -g+pz)) Y 

and the boundary conditions (2), Q (P) is a Fredholm operator of the form 

acting in C 10. 1) , Q. (I, 5, P) is the Green’s function of the operator M (P), and V 

is the Volterra operator (3) acting in A,, (1jj. 
A close connection exists between the Euler stability with weight a (t) of the bound- 

ary value problem (l), (2) and the spectrum of the operator Q (P) V in the space 
A,, (tj) (C 10, 4). The following lemma establishes this camection. 

Lemma. In order for the boundary value problem (l), (2) to be Euler stable with 
weight a (t), it is necessary and sufficient that 1 / P be a regular point of the operator 

Q (P) V in the space Accr (tjj (C 10, II). 
Proof. Sufficiency follows from (4). In order to prove the necessity, we use the the- 

orem for multiplying spectra according to which 

fl (Q (4 v’) = u u a 
i hEa Pi - P 

where u (Q (PjV) is the spectrum of the operator Q (P) V in Axar(tj) (C 10, Zi). 
If i / P E u (Q (Pi V), then according to (6) there is a ho E cr (V) and a Pirsuch that 

1 I P = ho I (Pi, - P) 
This means 

(Pi. - P) / P E (T (V) 

Further, let us repeat the reasoning contained in the proof of Lemma 2 in [4] but re- 

placing *(e-8t),bY ya (t))’ which concludes the proof of the lemma. 

This lemma and Theorem 1 from [l] permit a proof of the following theorem. 
Theorem : Let K (t, z) = K. (t, z) + Kl (t, r), where each term satisfies conditions 

(1) - (3) of Theorem 1 in [l] and , 

s 

1) If K, (t, z) > 0 in the domain 0 g z < t < 00, then the critical value of the 
force P is given by the formula P 

(a(t)) = P, / (1 + Tr,) (8) 

where Pr is the critical Euler force corresponding to (l), (2) (let us recall that P, = P, 

We C41). 
2) If 

a (0) = 1, a (t + z) < a (t) a (z), K. (t, 2) = K. (t - Z) 
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then the following estimate holds for the critical value of the force P 

P(a(t)) > P, / (i + ~01, (xg = g~.~.~ Re k. (w) for Im k, ;ti) = 0) (9) 

where k. (w) is the Laplace transform of K, (t). 

Equality in the estimate (9) is achieved for a (t) = eeel. 

3) For subcritical values of the force P the limit deflection (,&y) (2) is the solu- 

tion of the boundary value problem obtained from (l),( 2) with the replacementi y by L,Y, 
P by&p, and the Volterra operator V in (3) by the operator of multiplication by a con- 
stant T& 

P r 0 0 f . Let us start with the assertion (1). According to (6) and Theorem 1 from [l], 
the spectrum radius of the operator Q (P) V in A<, (1jj (C[o, 4) equals Tko / (P, - P). 
Hence, for 1 / P > Z’,” / (P, - P) Euler stability with the weight a (t) , holds. If 1 / P = 
TkO i iP, - P), then 1 ; P 6: a(, ctj) (Q (P) V) and therefore (see the lemma), stability 
does not occur. Hence, (8) follows. 

Let US prove (2). There results from Theorem 1 in [1] and the corollary to Theorem 1 
in [S] that the transform of the half-plane Be W ,> 6 given by the function k, (w) co- 

vers the spectrum of the operator V in (3) in A,, (tj>. Hence, and also from (6), it fol- 
lows that if 

i/P>x,/(P,-P) (10) 

then 1 / I’is a regular point of theoperatorQ (P) V in A.,, ,,Ljj (C 10, 11). This means that 

Euler stability with weight cz (t) holds for P < P, / (1 + x0) . The estimate (9) is hence 
obtained, 

Let us examine the case CL (t) =z P-” In this case 
x0 t 5 (e_el> (v), xoi (P, - P) E +f> cQ (0 V 

Hence, if the “greater than” sign is replaced by the “equals” sign in [lo), then accor- 
ding to the lemma, stability will not occur and the right side of the inequality (9) will 
yield an expression for the critical force Pee-“). 

The assertion (3), which is a direct corollary to Lemma 1 from [4], the lemma of this 

paper, and the easily provable equality T, = T,, , affords a foundation for a method of 
computing the creep strength modulus under more general conditions than in [4]. 
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